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Scheme VI"» 

1, Strychnine 

"R = SO2C6H4OMe-P. '(a) (EtO)2P(0)CH2CN/KHMDS/THF 
at 25 °C (72%). (b) DIBAL/CH2C12 H3O

+ workup. NaBH4/Me0H 
(31%). (c) 2 N HCl/MeOH (81%). (d) TBDMSOTf/DBU/CH2Cl2, 
-20 0C (60%). (e) S03-C5H5N/DMSO/Et3N (70%). (f) py/HF 
(60%). (g) Na/anthracenide/DME (85%). (h) CH2(C02H)2/Na-
OAc/Ac2O (70%). 

ketal hydrolysis proceeded, as expected, to give the furanoside relay 
compound 2. 

At this stage we decided that 2 might be more readily available 
from degradation of strychnine (1), allowing examination of the 
final stages with substantially more material.7 

The Wieland-Gumlich aldehyde (W-G A) 208 was treated with 
p-MeOC6H4S02Cl/py (70%) followed by catalytic osmylation9 

to give the rearranged glycoside derivative 22 (70-80%) (X-ray). 
Reduction (LiBH4) of 22 gave the tetrol 23 (43-56%), which was 
cleaved (H5IO6) to give the relay compound 2 (55-61%). Using 
this sequence 2 is available in gram quantities in three steps from 
21, Scheme V. 

Treatment of 2 with TIPSOTf/DBU/CH2Cl2 from 0 0C to 
25 0C gave the ketone 24 (69%). When 24 was treated with 
(EtO)2P(0)CH2CN/KHMDS/THF at 25 0C, it was cleanly 
transformed into 25 (72%) as a mixture of geometrical isomers, 
3:2, with the desired E isomer in excess. The stereoisomers 25/25a 
were readily separated, and the desired E isomer was reduced with 
DIBAL followed by NaBH4 to give 26 (31% for two steps). The 
Z isomer could be converted into a mixture of the E and Z 
stereoisomers by irradiation (tungsten) in benzene. In this way 
we could obtain (E)-IS in 52% yield after one cycle. Desilylation 
(2 N HCl/MeOH, 16 h) gave the diol 27 (81%), which was 
identical with the material made by DIBAL reduction (90%) of 
21. Selective protection of the allylic hydroxyl (TBDMSOTf/ 
DBU/CH2Cl2/-20 0C) followed by oxidation (SO3-C5H5N/ 
DMSO/Et3N) gave the aldehyde 29 (42% for two steps). De­
silylation (py/HF) of 29 gave the protected W-G A 21 (60%), 
which was deprotected (Na/anthracenide)10 to give 20 (85%). 
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Since Robinson" has converted 20 into strychnine by treatment 
with CH2(C02H)2/NaOAc/Ac20 (70%), this completes the 
second synthesis of strychnine, and the first of the W-G A, Scheme 
VI. 
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Enantioselective complexation is a very important aspect of the 
field of molecular recognition. Modified crown ethers in particular 
have played fundamental roles as synthetic hosts in this field.1 

Cram and Lehn showed that chiral crown ethers involving 1,1-
dinaphthyl units2 or tartaric acid derivatives,3 respectively, ex­
hibited a high degree of enantioselectivity toward organic am­
monium ions in solution. Many workers have continued to in­
vestigate enantiomeric selectivity with other types of modified 
crown compounds.1'4"6 These selectivities are based upon different 
association constants, rate constants, calorimetric data, etc. To 
date, various detection methods of such diastereomeric complexes 
and their applications have been extensively developed with a 
variety of methods, such as NMR,6'7 UV,8 HPLC,9 and others.10 

However, the application or the applicability of fast atom bom­
bardment mass spectrometry (FABMS) to this has been virtually 
unknown.11"14 We report here the first observation concerning 
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Table I. [/(M + A)+ / / (R + A)+] and [/(M + A„)+ / /(M + As)
+] 

Values 

M 

1 

2 

3 

R 
S 
R/S 
R 
S 
R/S 
R 
S 
R/S 

4 

1.2 
1.2 
1.0° 
0.74 
0.74 
1.0° 
1.7 
1.7 
1.0° 

A+ 

5 

1.6 ± 0.03* 
1.3 ± 0.08* 
1.2° 
0.71 ± 0.03* 
0.65 ± 0.03» 
ca. 1.0° 
0.90 ± 0.03» 
0.74 ± 0.03» 
1.2° 

R 

12C4 

12C4 

15C5 

°[/(M + AR)+/I(M + Ag)+] value. 'Standard deviation (n = 5). 

enantioselectivity of a modified carbohydrate derivative toward 
enantiomeric alkylammonium ions by FABMS. 

A host carbohydrate 1 was designed and synthesized for ob­
serving enantioselectivity toward organic cations (Chart I). The 
key features are as follows: (1) use of the 0-D-mannofuranose 
skeleton,15 (2) O-alkyl modification of the hydroxy groups to 
promote selectivity for capturing cations,15'16 (3) introduction of 
cyclohexylidene units as potential steric barriers, and (4) addition 
of another oxygen-containing dioxolane unit for increasing com-
plexation ability. 

Table I shows the relative FABMS peak intensities, [/(M + 
A)+//(R + A)+], of the relevant diastereomeric adduct ions. Here, 
the internal standard technique is employed for quantitative 
comparisons,1517 and the internal reference compound (R) is 
carefully chosen so that [/(M + A)+//(R + A)+] values are kept 
nearly constant during prolonged scan times (10-50 scans). 

The relative peak intensity of the adduct ion between 1 and 
(R)-S is 20% higher than that between 1 and the enantiomeric 
(S)-S (Figure I).18 Since the pair of (R)- and (S)-alkyl-
ammonium ions is of equivalent hydrophobicity, it is reasonable 
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Figure 1. Quantitative FAB mass spectra for a mixture of 1, 12C4, and 
an enantiomer of 5 with NBA matrix; (a) (R)-S; (b) (S)-S. 

to assume that such different relative peak intensities under the 
same conditions reflect the different stabilities of the diastereomeric 
ions.12" The peak intensity may be affected by fragmentation 
(decomposition). However, we cannot clearly detect any different 
decomposition patterns in conventional (EBE-type) FABMS/MS 
(MI and CAD) spectra for these two diastereomeric adduct ions.20 

A similar value is obtained for another pair (3-5 set) involving 
a modified crown ether.21 In the case of lesser steric requirements 
for such complexations (1-4, 2-4, 3-4,2-5 sets), the value of [/(M 
+ AR)+/I(M + As)

+] is almost unity. Therefore, when more 
severe steric hindrance and sterically different complementarity 
for the diastereomeric set is expected, the quantity goes up to 1.2 
(1-5, 3-5 sets). These findings suggest that FABMS, which may 
reflect certain gas-phase phenomena,12,15 can detect the different 
stabilities of these diastereomeric ions only if there exists different 
intermolecular complementarity which provides energetically 
different interactions. This is consistent with the fact that 
charge-dipole and related interactions in the gas phase in the 
absence of solvent effects are larger than those in the solution 
phase.19,22 The present enantioselectivity in FABMS proves that 
the modified carbohydrate possesses the ability to capture organic 
ions in terms of multisite charge-dipole interactions at a particular 
complexation site. 
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